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A THEORETICAL STUDY OF COMBUSTION
AND QUENCHING OF SOLID PROPELLANT
ROCKET MOTORS DURING DEPRESSURIZATION

SUMMARY

The conservation equations in the solid and gas phases are coupled
with the chamber overall mass balance equation to produce a method of
computing transient burning rates in solid propellant motors. This method
is used to compute burning rates during rapid depressurizations achieved
by suddenly enlarging the exhaust nozzle. A nondimensional parameter
characterizing the depressurization rate, Dg, is used to correlate the re-
sults. During depressurizations, burning rates are smaller than the steady
state values at the corresponding chamber pressures. A quench occurs
when the depressurization parameter, Dg, exceeds some critical value Dge.
The quench limit of a propellant can be given as a single curve on the
Dg ~ P, /Pj plane, where Pj is the initial chamber pressure and P, is the
steady operating pressure corresponding to the enlarged nozzle area. The
results are in reasonable agreement with experiments. The effects of
several variables on the quench limit are discussed., Ways of improving
the present theory are suggested.

INTRODUCTION

It has been observed that a solid propellant rocket motor can be
quenched by a rapid decrease of chamber pressure. Depressurization can
be achieved by enlargement of the throat area or by opening a vent. If the
depressurization rate is high enough, a quench will occur even though the
steady state chamber pressure corresponding to the enlarged throat area
is well above the low pressure limit of stable combustion,

The first systematic study of this phenomenon was reported by
Ciepluch”. He burned propellant slabs in a chamber of relatively small
free volume. He achieved rapid depressurization by suddenly venting the
chamber. He observed that a quench will occur if the chamber pressure
is reduced at a rate greater than some critical rate. The critical rate
was approximately proportional to the initial chamber pressure. The
critical time was, therefore, nearly independent of the initial chamber
pressure. The critical time in one motor need not be the same as that in
another having a different geometry (chamber free-volume, propellant
surface area) even with the same propellant. Ciepluch also studied the
effects of propellant composition on the critical time%. The critical time
was decreased by an increase in aluminum or ammonium perchlorate con-
centration. There was no correlation between the critical time and the
strand burning rate.

One criterion for quenching might be that the burning rate goes to zero.

1g rate during pressure transienis 1s, thereiore,
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essential. Transient ballistic performance has sometimes been evaluated
with steady state burning rates’ Von Elbe? developed a theoretical model

to predict nonsteady burning rates. He assumed that departures from

steady state rates resulted from the slow readjustment of the temperature
field in the solid. The relaxation time in the gas was assumed to be neglig-
ible. He treated a case of a moderate rate of pressure change. He assumed:

(A) The temperature profile in the solid is the same as that
of the steady state at the corresponding burning rate.

{B) The heat flux from the gas phase is the same as the steady
state value at the corresponding burning rate.

Von Elbe's rate law says that the burning rate at any instant is determined
by the instantaneous chamber pressure and its time derivative. It also
says that burning rates during depressurizations are smaller than steady
state burning rates at the corresponding pressures. Thus, 2 quench might
occur at some critical depressurization rate. He derived his equations by
considering the behavior of the temperature readjustment process. The
same thing can be done more concisely as follows: the integral form of the
en=rgy equation in the solid is,

cG(T -Ti) = f_ - dq/dt * (i)

sk
where fg is the heat flux to the grain just inside the propellant surface

and q is the energy content in the solid. In the steady state dq/dt = 0, hence,

f
C—}St iy - s,steaidy (ii)
Y T -T))
w i

The term dq/dt must be positive in a depressurization process if combus-

tion is to continue. Hence, if fg tyrangient 18 @ssumed to be equal to {5, gsteady:
equation (i) requires that the burning rate during depressurization be smaller
than the steady state rate. When dp/dt has to be considered, the tempera-
ture gradient on the gas side of the surface must be larger to satisfy the
energy balance at the surface. Then f; in the depressuvrization must be
larger than the steady state value. The applicability of assumption (A) to a
rapid depressurization process may also be questionable. The same burn-
ing rate law, with a different constant was derived elsewhere5.

* Von Elbe's basic equation has an error. It has the term 2dq/dt instead
of dq/dt in equation (i).

sk f. is not the same as the heat flux from the gas phase f,. They are

s M
related by fg - f5 = Ah,,G. Von Elbe overlooked this difference.
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In previous Work6 we described an experiment in which chamber
gas was suddenly expanded into a secondary evacuated chamber. After
a rapid depressurization as the secondary chamber was being filled, the
pressure continued to decrease at a slower rate. The burning rate after de-
pressurization was thus lower than the steady state rate at the same
pressure.

A nonsteady burning rate theory has been proposed in connection
with oscillating combustion! A modification permits inclusion of
heterogeneous surface reactions. The nonsteady conservation equations
were linearized around the steady state conditions by a small perturba-
tion method. The first order response of burning rates to pressure
transients was used to determine quenching criteria. A close relation-
ship between quenching criteria and stability criteria was suggested.
However, since the small perturbation method was used in the mathe-
matical treatment, application of this theory to quenching may not be
justified. The models of neither reference 4 nor 8 couple the overall
gasdynamics {energy and mass conservation in the whole chamber) to the
response of the solid to pressure disturbances. Hence, they do not give
the effects of motor configuration on the quenching behavior.

It has also been obs erved9 that combustion cannot be maintained at
pressures below a critical pressure which depends on the characteristic
length of the chamber. This is called L*-extinguishment in contrast to
dp/dt-extinguishment. A propellant which is susceptible to L#*-extinguishment
is also susceptible to dp/dt-extinguishmentlo. This is interpreted ™ to mean
that L*-extinguishment occurs because dP/dt is amplified during the de-
creasing pressure phase of an oscillation. The measured dP/dt at the
point of L*-extinguishment is said to roughly correspond to ap/dt at
dp/dt-extinguishment.

Procedures for combustion termination by nozzle area variation have
considered both mechanisms!?. It was implicitly assumed that the critical
time to produce a dp/dt-extinguishment is the same for all motors. This
assumption has drawbacks. If depressurization is initiated by sudden open-
ing of a secondary nozzle, the size of the secondary nozzle and the chamber
volume determine the depressurization rate. If Pl is the initial chamber
pressure and PZ the operating pressure when the motor uses both nozzles,
the motor cannot be extinguished if PZ /_151 is nearly one, no matter how
large ap/dt may be made by reducing the chamber volume or the propellant
surface area. On the other hand when P2f151 is nearly zero, the motor will
be extinguished even when dP/dt is small. The quench limit must, there-
fore, be determined by coupling chamber ballistics with a nonsteady burning
rate law.

When a solid propellant motor is depressurized at non-zero ambient
pressure, one of three things may occur: a quench, a burn-out or a re-
ignition13 in which the motor appears to have quenched for several seconds.
Inert gas injection has virtually no effect on the occurrence of reignitions



Solid phase reactions may play an important role in the process, however.

The present state of art in this field suggests that a sound thecoreti-
cal framework is needed to provide a method for interpretation and correla-
tion of the experimental data and to suggest meaningful experiments. Even
though few kinetic or transport properties are known, such a framework
can serve this purpose. The work described in this report is intended to
do this. A method for computing transient burning rates is described. It
is not restricted to small perturbations. For computational simplicity,
the assumption is made that the adiabatic flame temperature remains
constant during the pressure transient. The results, therefore, predict
a need for higher depressurization rates to produce a quench than would
be required if a more realistic temperature were used. The method can
easily be modified to handle different flame temperatures. This method
is then used to compute burning rates during rapid depressurization to
obtain quenching limits in terms of appropriate parameters. The effects
of motor configurations are included by coupling the chamber mass balance
to the conservation equations in the solid and gas phases. The results are
compared with experimental data. They are used to suggest natural para-
meters which should be used to correlate experiments and to suggest addi-
tional experiments and theoretical studies.

FORMALIZATION OF THE PROBLEM

In this section, a nonsteady one dimensional combustion model is
presented. Since the flame is very thin compared with typical motor
dimensions, a one dimensional model is probably a good approximation.
The conservation equations in the solid and the gas phase are used. With
the boundary conditions imposed at the propellant surface, the burning rate
is determined uniquely as a ''connecting coefficient' of these partial dif-
ferential equations.

The problem is admittedly oversimplified. Thermodynamic and
transport properties are assumed constant. A single step reaction of the
order n, which may have fractional values, is assumed. Molecular weights
of reactant and product are assumed to be equal.

Gas Phase

The continuity equation is,

If all diffusion coefficients are assumed equal and thermal diffusion is
negligible, the conservation equation for species i is,



1 i - =
— t— = Wi(Pi’T) (2)
ot Ix B
where
p; =Mm.p
and . ami
G. =m,G-pD
i i -
9x
We consider only species 'reactant' and "product'. Combination of equa-
tions (1) and (2) yields,
_ aml _ 9m Bzml
p— + G — - pD— = W/ip,T) (3)
at ox Ix

where the subscript 1 denotes reactant. The mass rate of formation of the
reactant is given by,

W, = -KalneXp(-F:/T) . (4)

The diffusion-thermo effect and kinetic energy of the gas are assumed
negligible. If heat capacities of reactant and product are the same, the
energy equation is,

- = 8G.h 2=
p i i 8T
e e
at 8% & ax
where ) _ o
h.,=c¢ T + h, ,
1 P 1
h =% mh, ,
1 11
and . _ ém,
ZGh, =GZmh, - pDZ — h
1 11 i 11 -
9x
= = - am1 -0 o
=Gh-pD—(h_ -h)
- 1 2
9 x
The heat of chemical reaction at constant pressure 1s AR° = Eol - 1_102 .
Combination of equation (5) with equations (1) and (2} yields,
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- = -k 5 = - AR°W, . (6)

Multiplying equation (3) by AL® and adding the result to equation (6), one
obtains,

k -0
0 " (Le-l) Ah

- =0. (7)
ot ot ax p 9x P 9x

It is now assumed that the Lewis number is one. Then k/c =pD = /; and
equation (7) becomes,

- _ _ 2.
- oh 9P — dh 9 h
p—-— +G= -/ == =0 . (8)

ot at ax 9%

We remove the momentum equation by assuming that the pressure in
the combustion zone is uniform, i.e., P = P(f). When the throat area is
suddenly enlarged, the pressure in the combustion zone starts to change
when the rarefaction wave first reaches it. By this time the rarefaction
wave is much thicker than the flame even though the rarefaction may have
started as a centered wave. Pressure gradients in the combustion zone
can, therefore, be neglected.

The boundary conditions at the propellant surface are: continuity of
mass flux,

C—}s(t) Gg(O,t), . 9)

continuity of temperature,

T (0,t)=T (0,£)=T , 10
T0.6) =T (0.6)=T (10)
continuity of species mass flux,
aml
= o\ _ & - ) , !
Gs(t) Gg(O,t) m pD( w (11)
ax
and energy balance,
ksa—T)s =k a—T) - ah G (E) . (12)
ax/ Y 8 ox /8%

Combination of equations(ll) and (12) gives the boundary condition for equa-
tion (8),



(AR° 4+ ¢ T - AR )G -k 2"5) g5 - ) 13)
p W w' s s .= Js.w sw lg _-Jg,w
X ox

where A}-l is the enthalpy change of the surface reaction. It is positive
for endothermic reactions.

The surface temperature is assumed to remain constant during de-
pressurization. Since the surface reaction is a rate process, a rate equa-
tion of the form,

C—Es(t_) = B exp (—E-IW/TW) (*)

may be a better one. However, studies of the pyrolysis rates of propellant
components suggest that E is large. Thus, for a wide variation of burning
rates, the surface temperature should stay almost constant. Measure-
ments of surface temperatures at various operating pressures16 support
this contention.

The initial temperature and concentration profiles are given by solu-
tions of the steady state equations; the initial mass flow rate profiles are
not. If the pressure in the chamber is uniform, the continuity equation ap-
plied to the whole chamber gives a pressure versus time relation of the type

=P (-ct)neart = 0. If dP/df (hence, dp/dt) is not zeroatt = 0, equa-
tlon (I]) requires that dG/dx be non-zero at t= 0, although G is constant along
x before depressurization. This results from our neglect of the momentum
equation, i.e., the acceleration time is assumed negligibly small. The
gas velocity undergoes an almost discontinuous change but the position of
each gas element does not change. Consequently, the temperature and the
concentration profiles stay unchanged. Initial values of T and m; can be given
by the solution of the steady state equations, initial values of G by the solu-
tion of equation (1) with the initial value of dP/dt.

Solid Phase
It is assumed that there is no chemical reaction in the solid.

If a2 coordinate system fixed with respect to the propellant surface
is used, the energy equation is,

- - 2 -
aT = - 0T 2T
P.C — tcG (t) —, =k—h (14)
ot ox 9x
The boundary condition is, T(0,t) = Tw

If the coordinate system fixed with respect to the solid is used, the energy
equation becomes,
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5 (15)

with the boundary condition

w

t -
T=T at x = j S gt
p
For both coordinate systems the initial data are given by the solution of,

— y=x =x , (16)

0, =T
T(0,t) =T
and

T(-=t)=T

The equation for energy balance at the propellant surface is used with these
equations.

If Pand G are prescribed and the boundary condition (12) is removed,
the solid and gas phase equations can be solved separately. The burning

rate Gg is the ''connecting coefficient' which must be determined to satisfy
equation (12). '

Chamber Gas Dynamics

Equations (1) to (16) can be used to compute burning rates if P (t) is
prescribed. However, since depressurizations are usually achieved by
alteration of the engine hardware, P (t-) is an unknown variable to be deter-
mined. The quench limit is determined only when chamber gas dynamics
is combined with a propellant burning rate law. In this study depressuriza-
tion is assumed to be achieved by a sudden opening of a vent nozzle.

When the ambient pressure is zero, the mass conservation equation is,

v-‘13=6.A-(rh+r'n). (17)
ai S p t v

Pressure and temperature are assumed to be uniform in the chamber. If
the nozzle throats are choked immediately, the mass flow through the nozzle



is given by,

o]

mt+mv=C1(At+Av) —

\/’1‘ (18)
1

+1
where . - 2 Y 2y
1\ v+l (y+1) R °

The P~T relationship has a minor effect on P~G relationshipé. For
simplicity we assume an isothermal process here, If f’l and f’z are the
steady state chamber pressures corresponding to the throat areas A, and
(At + A_) and steady burning follows Viellie's law,

H

—2 (l-m) At
— = (19)
’P1 At + Av
Combination of equations (17), (18) and (19) yields,

D ‘1-m) v 1-3 (1-1’1‘1) _ _

1 c 2 G P
; = = = s B (20)

) ! \Pl AtR§1T ; dt P S P

where 61 is the steady state burning rate at i’l.

When the ambient pressure is not zero, the depressurization process

is the same until the chamber pressure reaches the critical pressure. After
this the mass flow rate through the nozzles is,

o~ 5 I—,a 2/ I—:.a (y+1) /v
d Y o= A A — - | — 21
™, + 1t ’R('Y—l) "flf/z (A, +A) = 5 ‘ (21)

Equation (17) becomes

(1-m)
1 @ N _(_;1_ _ P Ate+Avex
C, af G B AtA,
1 1
' +1) /v
S [yl 1/(v-1) (i)Y
31 (x4 (22)




where Ate and Ave are the nozzle exit areas, and 1_31 and f’z are assumed to
be above the critical pressure. The critical pressure ratio is given by,

P /(v-1)
— -(751)77

(23)

crit.

Non-Dimensionalization

e define the follo;mng non-fhmensmnal ¥ar1ables X = x/x, t =t /t
h=h/h P = > PJP T = T/T E = E/E and G = G/G. The non-dimensionalizing
quantities x, t, etc, should be chosen in such a way that the magnitudes of
such factors as 8T/08x, etc, in the equations are of the order one; the mag-
nitudes of the terms themselves are now determined only by the magnitudes
of the non-dimensional parameters. At the same time the number of

non-~-dimensional parameters should be minimized. The obvious choices

are, T S T -
P=P,T=T ,G=6G,, E=T , h=c¢ T
1 W 1 w P W

* ¥ *
The choices for T and E are somewhat arbitrary. We will choose t in such
a way that the non-dimensional depressurization rate dP/dt is -1 att = 0.
Thus, t is the characteristic time of depressurization. From equation (18),

. 1/2

e . — 1-m
t = Vc/(clAtRT

¢ VBB T - (BB (24)

* ,
We define different x's in the solid and gas phases because the thicknesses
of the thermal layers in the two phases are different. The steady state
energy equation suggests the following definitions:

in the solid phase,
* -
d =/ in the gas phase.
an xg g/(}1 n g P

The resultant non-dimensional equations can now be written.

Gas phase. The continuity equation (1) becomes,

0% 0 G
— = — =90 25
Dg v-1 ot (’g+8x (25)
where IF
D = ——=2—
g LTG
p w'l

-10-



The energy equation (6) becomes,

. ; 2
Dg( Y P 8T BP) Gﬂ‘ o T

¥v-1 T 8t ot ) 2
ox
where K Aﬁoﬁ?
A= +1 2
T REG
W 1

Equation (8) becomes,

vy-1 T ot

y P sh 9P oh
Dg( 8t)+G8x -

The boundary conditions are:

G (t) = Gg(O, t),

T (0,t) = Tg(O, t) =1,

oT

?) m’; exp(-E/T) (26)

2
2

9x

[od
< a—x)s,w —‘a;)g,w - ARG (1),

and
(Ah°-Ah +1) G -— a—T)
w 8 Cp ox

oh
s,w 0x

2

e

0

h .
s g, w

The initial values of T and h are given by the solution of,

2
dT 4T (P)n n
= -—= = Al=] m’ exp(-E/T)=0
2 1
dx dx T
and 2
db _dn _ g
-— = .
dx dx

(27)

(28)

(29)

(30)

(31)

(32)

(33)

Elimination of 9T/8t from equations (25) and (26) and substitution into equa-

tion (32) gives initial values of G.

1

G(x,0) =1-D — == x

g -1

(34)

- N



Scolid phase. Equation (13) becomes,

2
aT aT T
Dot + O ™ 2

ax'’

h
where D _ps/—;
.
°* fg

with the boundary condition,

T (0,t) =1.
Equation (14) becomes,
ot _ o't
S 2
s 8t 9%

with the boundary condition,

t
T=1 at s=—;£dt
D
o s

The steady state equation (20) becomes,

ar _ &t
T2
dy dy
with the boundary conditions,
T(0) =1
and
T(- = T,

Chamber gas dynamics. The ballistic equation (20) becomes

dp

1-m
rrali (PZ/PI) G-P

1-
(1/[1-(p2/p1)

The ballistic equation for subcritical pressures (22) becomes,

(1-m)

S dar _ (i} G-P Ate+ Ave/'YTl—' (14-_1_)1/(7'1)
p2)(1-m) dt ~\P, a+va_/y1 2

1- ‘___

P

w1

-12-
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(36)

(37)
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If the burning rate differs from the steady state rate during a transient,
the difference comes from the time dependent terms in the governing equa-
tions. All time dependent terms are associated with Dg and D,; these para-
meters, therefore, determine the magnitude of departure. Dg and D, re-
present the ratios of the temperature response times in the solid and gas
phases to the characteristic time for depressurization.

Evaluation of Non-Dimensional Parameters

To evaluate the non-dimensional parameters and carry out numerical
calculations, we need thermodynamic properties, transport properties,
and chemical kinetic data.

It will be shown later that the present theory gives the relationship
between the gas phase reaction order and pressure exponent of the steady
state burning rate as n = 2Zm. Knowledge of the preexponential coefficient
is not needed if the steady state burning rate at any chamber pressure is
known. Physical and chemical properties of typical composite propellants
are listed in Table 1. The values in the third column were used in numerical
calculations.

TABLE 1

VALUES OF PHYSICAL QUANTITIES USED IN COMPUTATIONS

typical values values used in calculations
m 0.3- 0.8 0.4, 0.5, 0.6
E(E) 5000 - 15000°K 5000°K(5. 56),10000°K(11. 12)
Ah (h ) + 100 cal/g16 -90 cal/g(-0.2),0,490 cal/g
W x

c 0.28-0.3 cal/g°§{17 0.3 cal/gZK
c 0.45~ 0.67 cal/g K 0.5 cal/g K

P -4 17
ks 9.8x10" cal/Tsec. cm
k 2. 0x10_4ca1/0C sec.cm
£ o_16 o
T (T ) 800- 1000 K 900 K
Twiw o o
TAT)) 2500 = 3500°K 2700°K
TAT)) 300°K 300°K
P 1.7 g/c:m3

-13-



Three values of m, two values of E and three values of Ah  were selected
for the computations. In this way the effects of variations n propellant
properties were observed. All other values were fixed. The cases of en-
dothermic, neutral and exothermic surface reactions having enthalpy changes
of +90 cal/g, 0, -90 cal/g corresponding to Ah,, =0.2, 0, and -0.2 are
considered, since they represent a range of possible valuesl6,

Dg and D, represent the temperature relaxation times in the solid
and gas phases. A small value of Dg or D, corresponds to a quick response
to a pressure disturbance. If we use the property values listed in Table 1,
they become,

-4 =% = %*
D = —% = 55, 4x10 1/G1t (C}1 in g/sec.cmz,tin sec)
G, t
1
f’ 131 .
and D = _g_z = =1.465 B/t (B, in psia)
8 ¢ T G7 t
p w 1

A typical ammonium perchlorate composite propellant quenches when >;t< =
0.67x10"2 sec. or dP/dt = 0.7x10 ®psi/sec. at 500 psia. At the quench limit,
then, Dg = 0.827 and D_ = 1. 025x10'4. We have chosen the non-dimensional-
izing quantities so that all the derivatives and the reaction terms are of the
order of one in our non-dimensionalized equations. It may, therefore, be
concluded that, if dP/dt is not extremely large, in the gas phase the time
dependent terms are negligibly small. This means that the relaxation time
in the gas is very short.

We may tentatively summarize our consideration of the problem as
follows. When—Pl“—" 500psia, (-}1‘-‘—’1 g/cmZ sec., and if dP/df € 10 3 psi/sec.,
the whole process is quasi-steady and the burning rate follows the steady
state law. If 104 psi/sec (df’/d‘c-(lo'7 psi/sec, relaxation time in the gas
phase is still negligible but it cannot be neglected in the solid phase. If
df’/df) 10” psi/sec., relaxation times are not negligible in either phase.
Since we are interested in the range dP/dt =104~10 psi/sec., our mathe-
matical problem is greatly simplified.

Final Formulation

When x is large and G is small, terms containing Dg may not be neglected.
Far from the propellant surface, all other terms in the energy equation be-
come comparable with D,. Very far from the surface, the nonsteady term
predominates. The energy equation (26) reduces to,

oT _ 9P
t ot



T’Y/ P’Y_1 = const.

Thus, outside the flame zone, the P~ T relationship is isentropic for all
depressurization rates. If depressurization is very slow, the chamber
temperature does not change; a succession of the steady states is observed.
This apparent contradiction is explained as follows: The flame zone (zone
of non-uniform temperature) is different in steady and nonsteady states.
Consider a gas element which just emerges from the propellant surface as
depressurization starts. The temperature of this element increases be-
cause of its own combustion and conduction. Some of the temperature
increase is sacrificed by the expansion work due to the depressurization,
However, the chemical reaction zone is so thin that the pressure has de-
creased very little by the time the element has been completely burned.
The temperature of this element is almost adiabatic flame temperature,
The temperature of the element then decreases as it expands. Ina real
motor when the pressure change is slow, the gas element has left the ex-
haust nozzle before the temperature or pressure decreases appreciably.
Even if depressurization is fast, the temperature at the end of the reaction
zone is almost adiabatic flame temperature. For the purposes of this com-
putation , transient additional heat losses to the solid are ignored although
they are undoubtedly significant.

Terms associated with Dg also become comparable to the other terms
near the end of the depressurization process when the burning rate becomes
very small. By this time, however, the important features of the process
have been determined. The relative magnitudes of Dy and D, do not change.
We therefore neglect all D_ terms and assume that the temperature at the
end of the reaction zone is the adiabatic flame temperature., The steady
state equations (32) and (33) are then valid for nonsteady states as well.
From equation (34) we obtain,

AG/GZ1 +Dg

where AG is an increase in G due to acceleration of the gas. We may,
therefore assume that G is a function of time only and equation (25) can be
removed.

Now it is more convenient to use a new space coordinate defined by,

"

? xG (t) in the gas phase
g

in the solid phase.

Y

=l

o

Q
wn

i
"
Q
G
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where ’
A'=A/G
and

th dh

d/?Z- 5—7/”:

Boundary conditions for (40) and (41) are given by equations (28) through (31).
In the solid phase, Dg is of the order one; hence the energy equation (35) or
(36) remains the same.

0. (41)

SOLUTION

Gas Phase Equations
In the gas phase equations (32) and (33) can be used at each instantaneous
time. However, because the boundary conditions at the surface are time de-

pendent, the solution is different from that of the steady state.

The general solution of equation (41) is given by,

h=C1+C2e7

Since h=>at ’7: o,

No reverse reaction is considered; m, = 0 at 7(’ = o, and

o
C1 =h_ = Too+m1°°h = Tf

Hense,

m, = ——— (42)

Substitution into equation (40) yields,

2 T n

d(}}T 4T 1 (?f - 1) exp(-E/T) = 0 (43)
d
(

o

d7+v
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where (E’rlz'f'anA}-lo(n—l)‘ G

and
g=T_-T

Then equation (43) reduces to a first order differential equation.

dy _ ,,exp CE/(T¢-¢)) &7
dE )\Z(Tf‘ﬁ) n y

(44)

The boundary conditions of equation (44) are

y=0 at £ = 0

and Y=Y, at £ =T, -1

f

The value of y is determined such that the gas and solid phase temperature
profiles satisfg equation (30). Ify, is specified, \ is a ''connecting coef-
ficient' which satisfies two boundary conditions simultaneously in the solu-
tion of the first order differential equation (44). This gives us a functional
relationship between y, and \, i.e., y, = f(A\). Two techniques were used to
solve equation (44), a finite difference method and an asymptotic method.

Finite difference method. Assume the value of A is given. We integrate
equation (44) from ¢ = O to ¢ = Tf - 1 by a finite difference method. However,
since the point £ = 0, y = 0 is singular, the finite difference method fails in
its vicinity. It is, therefore necessary to find an asymptotic solution. In
the vicinity of ¢ = y = 0, equation (44) becomes,

n
dy £
— = .1 + B (45)
dé¢ y
where
2. n
B = exp ('E/Tf)/)\ Tf

Three different asymptotic solutions are obtained for different values of n.

a) n(l,

_17-



. n, .
In this case, £ /y » 1, and equation (45) becomes

n
dy . 5 £
dg¢ y
Th luti is,
e solution is ) B n;—l 46
Yy = n+1 E M ( )

Consider the flame thickness.
n+l 1-n
d £ . = 2=
x:fYT: dY =/€2d€=€2 —2 0

Hence, the temperature achieves its final value at a finite distance from the
propellant surface.

b) n=1,

In this case, gn/y =~ 1, and equation (45) becomes,

dy
= - ¢
dg¢

The solution is,

y=¢C

The constant C is determined by substituting dy/d¢é = C and y = C£ into
equation (45). The result is,

C=-0.5+0.5/1+4B

Hence, the asymptotic solution is given by

_-1+J/1+4B

y= ———1¢ . (47)
c) n)l
The asymptote is given by a curve on which dy/d¢ = 0. Hence, the asymptote
is,
n
y =BE . (48)

In the small interval 0 £ (¢;, the solution is approximated by the
asymptotic solutions. £ should be selected so that it is small enough so that
the asymptotic sclutions arc good approximations, but large enough so that

further integration can be performed by the finite difference method with a

-18-



reasonable step size. For n (1, £) must be very small. From £l to £ =

T¢ -~ 1, the equation was integrated by the Cutta-Runge method with automatic
error control. The computations were performed for various values of \
and Ay, relationships were obtained. A sample FORTRAN program is
given in Appendix 1 for reference.

In the steady state, the solid phase temperature profile is given by
the solution of equation (37)., The result is,

T =T, +(-T,) AN (49)
Hence, v, is given by,
c 9T c
yo— C_p —877,S,W+Ahw— C_i—p (I-Ti)+AhW . (50)

Since \ is a function of y, and hence a function of the propellant properties
only, the steady state pressure burning rate relation is given by A\ = constant.
Hence,

G=rp"2 (51)

Thus, the present model produces Viellie's steady state equation. Ifall
thermodynamic properties, transport properties and chemical kinetic data
were known, burning rates could presumably be calculated. However, burn-
ing rate data are more plentiful than kinetic data. We evaluate the value of
the pre-exponential coefficient K by using,

62 7 Rnl’-lon-l
1 w

=n n-1_2
Pl/;Cp )\o

Using the property values listed in Table 1, K was evaluated for n = 1. The
results are shown in Table 2.

K =

TABLE 2

MAGNITUDE OF PREEXPONENTIAL TERM
IN THE RATE EQUATION, K

o) h K(l/sec.)
W

5.56 -0.2 0.148 x 102
0. 0.245x 10

0.2 0.347x 10°

8

.12 20.2 4,70 x 10
0. 6.35 x 10

0.2 8.15 x 108
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They are in reasonable agreement with the values proposed by other in-
vestigators 5. For reference the steady state temperature and concentra-
tion profiles in the gas phase for n =1.0, E = 5.56 are shown in figure 1.

The physical dimension was computed using property values in Table 1 and
G1 =1.0 g/sec. cm?,

Asymptotic method. We seek the asymptotic solution for small values of \.
For a small value of \, the flameisthinand y is large. Hence, dy/dg)) 1.
Then equation (44) is reduced to,

2 n
1 dy)__ ¢
2 dg - 2 n eXp(-E/(Tf-g) ) . (52)

X (Tf-g)

Integrating equation (52) from ¢ = 0 to ¢, one obtains,

g ,.mn 1/2
y =(t/N {2 exp (-E/(T,-£')) dg') (53)
(}o (Tf-é')n £

It can thus be seen that y=»1/\as A —0. . This suggests the following ex-
pansion:

y =QA/\)a, + A+ Azxz ... . (54)

Substituting equation (54) into equation (44) and equating the same order terms
of \ on the left and right hand sides, one obtains,

£ o 12
AO = [2 go (Tf-i')n exp(-E/(Tf-E ) ) dE] ’
3
Ao(é)
€ 2
. 'So Al(g') d¢' - 0.5A) (£)
2 Ao(e)
a - -Al(&) A, (¢) —S: Az(ﬁ') d¢’
37 Ao(g)
£
N -X AL(E)dE' - 0.5A,(8) - A (€) A(€)
4~ Ao(g) l

etc.
20,



if the integrations are performed from £=0to¢ = Tf -1= go, one obtains Yo'
2
v, -a/x)[AO(go) FALE DN HA (E )N+ L. ] . (55)

The asymptotic expansion was performed for small values of \ because the

burning rates during depressurization were expected to be smaller than the

steady state burning rates at the corresponding pressures. A sample FOR-
TRAN program for the computation of Ag(£,), A1(€,), etc., is given in Ap-

pendix 2. The asymptotic series (55) produced the best approximation when
the {irst five terms were retained. Temperature profiles can be obtained if
dN /dT = 1/y is numerically integrated once with respect to £.

For most of our computations, the asymptotic method was used to ob-
tain A~y relationships. The finite difference method was used to determine
the number of terms which should be retained in equation (55) for the best
approximation. The approximations were good in the range of our interest.
The A~y relationships thus obtained are shown in Figures 2 and 3.

Combining equations (31) and (55), one obtains

c 0T

— = - Ah s
Cp ox [s,w C;yo G W

G 2
= (A g+ (A-AR YA+ AN +. L),
(56)
where AO’AI etc. are evaluated at go.
Let 2
F(\) = A0 + (Al—AhW) . +A2)\ +. ..
Then equation (56) may be written,
2 B e TEN - (57
pF ’
. .. 0T . .
Since F(\) is known, equation (57) can be solved for \, if s w is given.
Then the burning rate G can be computed by, !
2
G=2p"2 g p"?% | (58)
)\o T

The relative burning rate G, is the ratio of the transient burning rate to the
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steady rate at the corresponding pressure.

We can now obtain a bit of useful information by considering an extreme
case. Suppose that a motor were depressurized infinitely fast. Since the re-
sponse in the solid is relatively slow, the temperature profile in the solid,

9
and, hence -——) remain the same as they were in the initial state. A
Ox [s,w, 0

is a positive number and F(\) decreases monotonically. Therefore, as the
pressure decreases, N\ must decrease. The transient burning rates are,
therefore, smaller during depressurizations than the steady rates at corres-
ponding pressures. The burning rate becomes zero when the chamber pres-
sure reaches,

2/n

c 1
q,max= (c_ )\o(1 B Ti) -A—O) . (59)

Solid Phase Equations

We seek the solution of equation (35) or (36). If G is a given function
of time, a unique solution is obtainable without the boundary condition (31).
We seek the solution of equation (35) or (36) with the appropriate function G
which satisfies equation (31), hence equation (57). Several schemes can be
used to solve this problem.

Finite difference method. Since equation (35) is a partial differential equa-
tion of the parabolic type, it can be solved numerically by the finite difference
method step by step along the time coordinate. G has to be determined at
each step by iteration. The explicit finite difference method requires a very
small time interval for each step to ensure stability, especially when G be-
comes small. More than 103 steps are required to cover the pressure range
from P =1.0 to P = 0.0l. The implicit method eliminates the stability problem
and allows the use of larger time intervals, but requires a more elaborate
iteration process.

Similar solution method. When G is given as a function of time, e.g.,

_ 1/2
G=1/(Ct+C,)" ",

equation (35) becomes an ordinary differential equation of the form,
N . 1= 0
f* +{(1+0 Schs) {

where

§- VAR ARICT c)M? e=(r-ToNT, - T,

The solution is //y
2 }
£ = A' exp(-(‘+0.25C1Ds7 ))d77 +1 ,

o
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i 2
A=-1/)- ext (-’7-0.25cn 77 4 )

This solution satisfies the boundary conditions at x = o and x = - The
initial condition can be satisfied by putting C; = 0. It is possible to use
this solution in the small interval and determine constants Cy and C, so
that equation (31) is satisfied at each time step. Different C; and C, must
be used for each time interval. This procedure can be repeated to cover

the necessary range of pressure, if the convergence of the process is
proved,.

Integral method. If the temperature profile in the solid changes smoothly
with time, the integral method may produce a good approximation to the
solution of equation (35). The temperature profile may be assumed in a
polynomial form satisfying certain boundary conditions. For example, if
one imposes the following boundary conditions

at J}/:o, 8 =1
at ﬂ7=1, 6=0

8"=10

one obtains,

e=1—3"77+3’f{2 —0(3 (*)

) = (T - TY/T - Ty = x/o0),

where

From equation (57) and (%)

c Ao 1
= - — — ———— Hesk
8=30-T) — =7z Fn ()
P P
Eliminating t from equation (35) and (38) and integrating from x = -=to
x = 0, one obtains,
D n/2 c
P)= =z — (—— -N) . Sk
0.25 —= (rG-P) T& = 5= (1 T, F(\) ) (o)

Elimination of § from equations (*%) and (*%%) gives an ordinary differential
equation for A\ with respect to P. Instead of equation (%), one may usea
non-similar temperature profile requiring satisfaction of equation (57) as a
boundary condition. The disadvantage of the integral method is that the ac-
curacy is known only when the result is compared with the exact solution.
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Moving heat source method. This method is used in the present study to
solve equation (36). With this method burning rates can be obtained with-
out computing the temperature profiles in the solid. We solve equation (36)
with a moving boundary. To satisfy the boundary condition at the moving
propellant surface, moving heat sources are distributed along the trajec-
tory of the surface on the x ~t plane (figure i). For convenience the direc-
tion of the x-coordinate is reversed so that the positive direction is directed
toward the solid phase. The whole x-space (-<to +%) is used.

initial temperature profile

Figure i

We define the time and temperature scales:

T:t/D

S
and T-T,
S=v17 -

1
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Equation (36) then becomes,
9%
- 2

a8
oT B

(60)

with the boundary condition,
6 =1 on S.
The initial temperature profile in the whole x-space is given by,

-x
Oo-e atx D 0

90=1 atx & 0

where eﬁn x {0 is somewhat arbitrary. This choice has a certain advan-
tage which will be explained later. The solution of equation (60) with initial
data 60 is given by,

o0
ea { 90 (x') Kl(x,x',T, 0) dx' (61)
t -0
where ] (x-x')
4(r-T")
Kl(x,x', T, T') = c
2 fu(r-T")
The result of integration is,
6, =0.5+0. 5T X 5 pr X ¢ F¥ oy 20X (62)

2y 2 /T

To satisfy a boundary condition on the propellant surface, i.e., 8 =1onS, a
moving heat source with the strength @ (7) is distributed along S. If a point
heat source f(x, 7) is distributed on the x~7 plane, the temperature profile is

given by the solution of,

2

o8 96 _

3 "3 ¢ flx, ) . (63)
ox

The solution is given by using Green's function. The result is given by,

0= Ga +[Kl(x,x‘, r, Yy f (x',7') dx' dT' . (64)

If the heat source is concentrated on the curve S, one may write.

flx',1') = 9 (x', T') 8 (x', ') (65)
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where B (x', 7') is Dirac's delta function. Substituting equation (65) into (64),
one obtains,

T
6 = ea + f Kl(x, xis T, Tg) ¢ (T') dT! (66)
o]

where (x', T') is on curve S. Equation (64) satisfies equation (60)int) O,
-ox {=. except on S, where 88/3x has a discontinuity. Integrating equa-
tion (63) from x'- € to x' + ¢, and letting € =0, and using equation (65), one

obtains,
1) (x‘,T‘)) 89(x',1"))
= -
() ox + * ax - (67)
where
96(x', 'r')) - lim 20_)
ax + ces0 Ox Jx = x"+¢
and ae(x',‘l") ) A‘W\ S\ ° T!
= — .
However, 8 = 1 in domain B og ﬁ'gure i7 Heﬁ%%,a’)!‘:f;‘é .
88 (x', ") _
9x )- =0
and 38 (x', ') 98
e 9XLTIY _9F
() = ox + Ox/Js,w (68)

Thus, the strength of the heat source is equal to the temperature gradient

in the solid at the propellant surface. As was stated before, the distribution
of 8, in x €0 and the position of the heat source are arbitrary. An advantage
of our particular choice is the simple relationship between @ and _8_9_) ex-
pressed in equation (68). Along curve S, 8 =13 x Is,w
hence, equation (64) becomes,

r ,
1=8_(x_,7) +£ sKl(xs,x', T g (r') ar (69)

where points (x', 7') and (xs, Ts) are on S. The trajectory of the propellant
surface is given by,

S dx' .
-Ei = G(Ts), ar = G(T') . (70)

Equation (69) is an integral equation for § (Voltera's integral equation of the
2nd kind) if G is a known function. G is determined such that #, hence,

06
ox/s,w
equation (69). To do this, we approximate the time derivative and integral in
equations (69) and (70) by finite difference equations and solve this equation

and G satisfy the surface energy balance equation (57) as well as
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The procedure is described in the next section.

along the time coordinate.
Numerical Procedures

Suppose G, P, @ and xg are known

Att=0, x,=0, andG=P=0 =1.
at Tyy,. Denote G(ty,), P(t), #(ry) and xg(7y,) by Gpy» Pry» 0> and Xs, m-

Then G 41s Py 430 P41 2nd Xg, 4] are determined in the following way.
0tor = Th and from

Equation (69) is integrated in two parts, from T
The latter integral is approximated by,

Tm 1 "Tm+i-

m+l

g +9
m m+l . , ,
> Kl(xs,x,'rs,'r) dr

Ll Tm
Assuming constant G from 1 to T )
m m+l
xs,m*H N Xs,m * Gm AT (71)

Then the above integral is explicitly obtained as,

erf (Tm ‘/ AT/2)

m

Equation (69) becomes,
P P 1 erf (G_ [A7/2)=1-0 (x - )
m - a'"s,m+ls, m+l’

2 G
m
-
m
- ' ' ' 1
Kl(xs’mﬂ,x s Ts,m+1’ T ¢ (r"y dr' . (72)
o
The integral on the right hand side of (72) can be evaluated numerically. Then
¢.m+1 can be obtained from equation (72). Pm+1 is given by the ballistic equa-
tion as,
Pm+1 = Pm + AP .
Ds (73)
AP=—— (rG - P) A~
where P, l1-m
r o —
1Dl




Combination of equations (57) and (68) gives,

C \o
= (1- =
c ( Ti)(¢m+1) n/2 F()\m-ﬂ)' (74)
P m+l
Since the right hand side of the equation (74) is a known function, equation
(74) can be solved for )‘rn+1' Then Gm+1 is given by,
N
_ m+l _n/2
Gm+1 o Pm +1 (75)

In the actual computation, the solution of equation (74) for \ ,,,] was simplified
by a priori determining the inverse function of F(\) in a polynomial form by
the least squares approximation. Thus,

-1
xm+1 =F (am+1) (74')
where c Ao
am+1 - < a- Ti) ¢m+1 Pn/Z
P m+l

and

2
(a) B +B1a+B2a + ..

Ninth order polynomials were used for F 1(aL) with satisfactory accuracy.
To improve the accuracy of the computation, a predictor-corrector method
was used. This method is briefly explained in the following paragraph.

First the procedure is applied to the interval between 7, and 7, = 7+
AT/2 to obtain G = G(7¢), P, = P(7¢), x = xg(7.) and p. =90 (v.). Then
Gp, in equation (71) and (72) 1s replaced by GC The computation of AP is im-
proved by replacing Pp,, G, by P, and G, in equation (73). The rest of the
procedure is exactly the same.

The evaluation of the integral

ij
1 1 t t
Kl(xs’mﬂ’x T’ " )@ () dr

o

must be done with high accuracy, particularly in the vicinity of 7, because
K; approaches infinity as ' approaches T,,41. This integral was approximated

by,
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m-1 exp m+l A
z 8. 4 a ™) _
n-1 > dr (76)
/7o 2T ™)
where
AxX = x -x |,
n+l n
and
At =T -7
n+l n

The integral in the above equation was evaluated by Romberg's method with
a relative error less than 10-6 for each interval. One might suppose that
the requirement of great accuracy is not justified since the approximation
in the above equation with respect to § may produce a larger error. How-
ever, one may interpret (@, + 9,41)/2 to be the exact value of P = @ (v +AT),
where 1) a) 0, such that, n

T T
n+l n+l

K1¢d1" = K dr

T T
n n

As the computation proceeds, dP/dT becomes smaller. If the same time
interval is us ed for the entire computation, undue computer time is used as
P approaches zero.- Therefore, in our computation a fixed AP was used
and At was computed by equation (73). To determine the size of AP which
produces enouth accuracy, the computation was first carried out with error
control on G. After the appropriate AP was established, the error coritrol
was removed for computer time economy. The FORTRAN program used for
the computation is shown in Appendix 3.

Quench Limits

Quench limits can be obtained from burning rate computations. When
the burning rate becomes zero at a non-zero chamber pressure, the motor
is said to have quenched. If the burning rate becomes equal to the mass flow
rate through the expanded nozzle, the chamber pressure starts to increase.
The result is a burn-out. For a particular propellant the behavior of the
burning rate depends only on Dg and P2/Pj. The quench limit thus becomes
a line on the Dy~ P,/Pj plane. We call the value of Dg at the quench limit
the critical depressurization parameter Dg.. Dg¢ is zero at P2/P; = 0, and
infinity at PZ/PI =1.

Results. Input data for the computations done on a CDC 6600 digital computer
are listed in Table 3. Comparison of problems I, II, and IIl gives the effects

of the enthalpy of evaperation. Comparison of II and IV gives the effects of
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the gas phase activation energy. Comparison of II, V and VI gives the ef-
fects of the gas phase reaction order or the pressure exponent of the steady
state burning rate. Computations for larger values of P2/ P are of little
practical use because the depressurization rates needed to quench in such
cases are so large that they can be achieved only with very small chamber
free volumes. The burning rates were calculated in a series of computer
experiments, From a given starting condition, the engine was depressurized
at various rates, given by Dy, at each of a number of pressure ratios given
by P,/Pj until a quench was observed. The computer time required for each
"firing' was about three minutes. Approximately 20 runs were needed for
each limit curve. Instability in numerical computations was experienced
when Dg was small. In our computations, the pressure interval, AP, was
fixed at . 005. When Dg is small, the associated time interval is large.

This causes a numerical instability. The critical depressurization para-
meter, Dsc’ is small when n is large. Ifn 1.4, a smaller pressure in-
terval is required. Numerical instability also arises if the numerical
integration of equation (76) is insufficiently accurate.

TABLE 3

INPUT DATA

Problem = n(or 2m) E Hw I-’Z/P1
I 1.0 5.56 -0.2 0.05, 0.1, 0.2
II 1.0 5.56 0. 0.05, 0.1, 0.2
111 1.0 5.56 +0.2 0.05, 0.1, 0.2
v 1.0 1L12 0. 0.1, 0.2
\' 1.2 5.56 0. 0.1, 0.2
VI 0.8 5.56 0. 0.1, 0.2

Computed transient burning rates are plotted against chamber pressure
in Figures 4 through 18. The upper portions show the overall pictures. The
lower portions show the detailed behavior near the end of the depressuriza-
tion process. The distinction between a quench and a burn-out can be clearly
seen. If a burn-out occurs, the computation stops when the burning rate
curve reaches the nozzle mass flow rate curve. At this point, dP/dt be-
comes zero. The burning rate curve should thus be vertical on a G~ P plane.
Our pressure interval was not small enough to show this trend.

Transient burning rates were always lower than steady burning rates
at corresponding pressures. When Dg was large, the reduction was greater.
The differences are small at the beginning of the depressurization; they be-
come more pronounced as depressurization proceeds. Figure 19 shows this
clearly.
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Typical chamber pressure~stime curves are shown in Figure 20.
The physical time scale was computed from propellant data in Table 1 and
61 =1 g/cmzsec. In a burn-out, the chamber pressure will climb back
up to Pp. The results indicate that the relative burning rate is smaller
for a smaller value of PZ/PI, a smaller value of Ahy, a smaller value

of E and a larger value of n.

These data were used to construct quench limit curves on the Dy~
P, /Py plane. The results are shown in Figures 21 through 26. Each point
represents one computer experiment. The trend of the curves is as an-
ticipated, i.e., the critical depressurization parameter Dy (or depres-
surization rate) is zero at PZ/P1 = 0 and infinity at P/P; = 1. For small
values of P,/Pj, Dy 's are almost directly proportional to P,/ Py.

The quench limit is determined by two factors. The first is the
response of the solid to an imposed pressure disturbance. The second
is the boundary condition imposed by the motor configuration. The effect
of P,/Py is found mainly in the second factor. All other things being equal,
the critical depressurization parameter decreases as Ahw decreases; the
propellant is easier to quench when the surface reaction is exothermic.
The critical depressurization parameter also decreases as the activation
energy of the gas phase reaction decreases and as the reaction order in-
creases. Dependence of D . on n is very strong. _It should be kept in
mind that Dy depends not only on dP/dt but also on Gj. Therefore, it is
sometimes misleading to say that a propellant is easier to quench, when
Dg. is smaller. It should also be noted that when two propellants have
different values of E but have the same value of Gy, they are supposed to
have different values of pre-exponential coefficients of the rate equation,

Discussion

. . 2
Comparison with experiments. The present theory agrees with Ciepluch's
observation that burning rates during depressurizations are lower than
steady rates at the same pressures.

The critical depressurization parameters computed at P2/Pj = 0.1
are in the range of 0.5~~30, If we assume the values of pg and [T listed
in table land Gy =1.0 g/cm?‘sec. (a typical value at P| = 500 psia), the cor-
responding critical depressurization rates Pg/tr (dP/gt at the beginning of the
pressure transient) are in the range 0. 42x10°~25x10~ psi/sec. Experiment-
ally observed ™’ “ critical depressurization rates (defined by 1_51/t1/2) are in
the range of 0. 5x10%~2, 0x10° psi/sec. If we consider the difference in the
definition of depressurization rate and the fact that the values of B/P] in
these experiments are probably lower than 0.1, the agreement is good.

Ciepluchlalso reported that the critical depressurization rate is nearly
proportional to the initial chamber pressure, and, therefore, the critical

time is nearly independent of the initial pressure. His experiment used a motor

whose depressurization rate was controled by varying the vent nozzle area.
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% -
Hence, PZ/PI' t, and P, are related.

1
pzm-l V f’ 1-m
= -1s+c == L i)
P 1A x (i
1 p t

where V. is the chamber free volume, A_ is the propellant burning surface
area and C1 is a propellant constant. The definition of Ds is,

C

2
D = —s5—r0o (ii)
K -
s ¥ PZm
1
where C, is a propellant constant. Elimination of 1—31 from equations (i) and
(ii) gives, 2m
CVil-m
c 1 ¢
2 ( A
Ds = 2m7(1-m) (111)
(-1) T (L4m)/(1-m)
T

where r = (PZ/Pl)l-m. Equation (iii) gives the relation between P2/P), Dg
andt when depressurization is imposed on the motor by a sudden opening of
a vent. If we substitute t =t_,.;; = const. into equation (iii), it gives a
limit curve on the Dg~ P, /Pj plane which is consistent with Ciepluch's ex-
periments. The result agrees with the results of this study (Fig. 27}, but
the present theory goes one step further. If the quench limit curves on the
Dg~~P,/Pj plane are obtained for the same propellant but with different
motors, they fall on the same curve.

The trends of the effects of n, E and Ahy, on quench presented in this
study cannot be adequately compared with experiments at present. Although
effects of propellant composition have been studied™, we don't know enough
about the relationships between composition and physical and chemical pro-
perties. The present theory predicts a strong dependency of Dg. onn. Con-
sider a quenching experiment in which two propellants with different values
of n are tested with the same motor and at the same initial pressure. If we
achieve the same depressurization rate for both propellants, the resulting
P,/P; will be larger for a propellant with a larger value of n,
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i.e., a high pressure dependence of the steady state burning rate makes a
propellant easier to quench (figure ii).

No computation was performed for the case where the ambient pressure
is not zero. In this case a nozzle mass flow rate curve on the G P plane
intersects with P-axis. This tends to increase Dg.. 'Extinguishment will
not be obtained if the ambient pressure is higher than Pq, ax in equation {59).

Although a limit curve plotted on the f’l dP/dt plane is not uniquely
determined by the propellant properties, and a curve plotted on the Dg P /P
plane is more general in the sense that it applies to all motor geometries,
neither approach is necessarily appropriate if the depressurization rate is
controled in a different manner, for example, by controling the opening rate.
Thus, there is no unique quenching limit curve for a propellant.

Improvement of the present theory. One of the crucial assumptions in this
study is that of constant surface temperature. The surface temperature
probably decreases slightly as the burning rate decreases. If a functional
relationship between the burning rate and the surface temperature is known,
the resent theory can accomodate this relationship with the following modi-
fications.

%* —
We redefine T to be the initial surface temperature. Ty is assumed to
stay constant. Then y, is a function of A and T (t). Equation (57) is re-
placed by,
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The function F(\, Tw) must be a priori determined. It may be convenient to
express F as F = F1(\)F,(T,,). To solve the solid phase equation (36), we
use the same initial data shown in figure i. Since the temperature distribu-
tion in x 0 is no longer uniform equation (68) does not hold and

20(x', ' . . . :
——(ia;{——) ) _ has tobe evaluated. Differentiate equation (64) with respect

to x at (xs, -rx). The result gives the arithmatic mean of 22) and -83

ox ox
Thus,

® (x_-x')

98 ET:) 98a s
0. —_ 4+ {— - 2= _ ' ' —_ v !
> ( ) (Bx) ) Ix Kl(xs’x 2T T ) Z(TS-T) () ar .

(o]

(2a)
s . . 96
Combination of equations (2a) and (67) gives the value of - at (xs, TX).
+

Suppose the computation has been completed up to v = T We continue the

computation to T =T _+AT. Compute 6 from,
m w, m+l

m+l

w, m+l = f(Gm) (32)

where 6 = {(G) is the surface temperature~burning rate relationship. Re-

place the first term (one) of the right hand side of equation (72) by 8-

Compute @ (t,41) in exactly the same way as we did with a constant surface

temperature. Replace (Dm+1 and F(\) by @) and F(\, TW) in equation (74)
ox

+

and compute Xm The rest of the procedures are the same.

+1°
We did no computations involving varying surface temperature. How-
ever, we can speculate on the effect. No matter what form equation (3a) may
take, experiments1 suggest that 8, is fairly constant up to a very small
value of G. Suppose 6= 0Oy, upto G = G;. Then the burning rate curve on
the G~ P plane will differ little from that for a constant surface temperature
until G = G;. If a burn-out results before G reaches G, both models predict
almost the same burning rate behavior. If a burn-out does not occur at
G ) G;, the burning rate beharior at G { G; may differ appreciably between
the two models. However, if the criterion for a quench is established such
that we regard the firing to be a quench if G becomes smaller than some
arbitrary small value G., and if G,== G,, the resulting quenching limits for
both models are about the same.

-34-



Another major assumption made here is that there is no chemical
reaction in the solid. It is quite likely that there are reactions in the solid,
especially if the burning rate is low. If a significant solid phase reaction
occurs near the propellant surface, we may treat it as a surface reaction
in an analytical model. We have considered exothermic, neutral and en-
dothermic surface reactions in our treatment. This may account partly
for the effects of solid phase reactions.

Finally, we have made the assumption of a constant adiabatic flame
temperature. Actually, during the pressure transient, the flame tempera-
ture will decrease somewhat because of redistribution of thermal energy
within the combustion wave to produce a flatter profile in the solid. Con-
sideration of this effect would make quenching somewhat easier than is sug-
gested by our results.
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primary nozzle throat area
vent nozzle throat area
specific heat capacity of propellant
specific heat capacity of the gas at constant pressure
diffusion coefficient
nondimensional parameter defined on page }0
depressurization parameter defined on page 12
internal energy
nondimensional activation energy in the gas phase
nondimensional burning rate (mass flow rate/area)
relative burning rate defined by equation (58)
enthalpy
thermal conductivity
pre-exponential coefficient in the rate equation
Lewis number
pressure exponent of steady state burning rate
mass concentration of i's species
mass flow rate through the primary nozzle
mass flow rate through the vent nozzle
nondimensional pressure
ambient pressure
steady state burning pressure corresponding to At + AV
gas constant

1-m
(P,/P))
nondimensional time
nondimensional temperature
propellant ambient temperature
chamber free volume
nondimensional space coordinate
t/D

i A

X
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[e>]

nondimensional temperature defined on page 24
1] nondimensional strength of heat source
/<o)
p density of the gas
p density of the propellant
¥ specific heat ratio
A defined on page 17
A Aatt=20
An° enthalpy change in gas phase reaction (nondimensional)

Ahw enthalpy change in surface reaction (nondimensional)

Superscripts and Subscripts

1 initial value

s solid phase

g gas phase

w propellant surface

- dimensional quantities

* nondimensionalizing quantities
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APPENDIX 1. A SAMPLE FORTRAN PROGRAM FOR SOLVING THE
GAS PHASE EQUATION BY A FINITE DIFFERENCE METHOD

Symbols

Y =y
YPRIME =dy/d¢
S = £
TIN = Tf
ACT = E
2
CON =1/x
RK = library subroutine for Cutta-Runge method
¥4 =n
C N =1, E =5.56

DIMENSION Y(1), Y PRIME (1), ERRI1 (1), W(4)

COMMON CON, TIN, ACT

EXTERNAL DERIV

TANF (CON, TIN, ACT) = -0.5+0.5%*SQRTF(l. +4.*CON/TIN*EXPF(-ACT/TIN))
PRIME F(S, Y, CON, TIN, ACT)=-1. +S/Y*CON/(TIN-S)*EXPF(-ACT/(TIN-S))
ERRI1 (1) = 1. E-9

ERRZ2 = 1. E-9

NUMBER =1

H =0.02

TIN = 3.

ACT =5.56

DO 21I=1, 60

P=1

CON = 60. +20.% P+l. 35%P*(P-1.}/2.

Bl = H*TANF(CON, TIN, ACT)

B2 = H¥*PRIMEF(H/2., B1/2., CON, TIN, ACT)
B3 = H*PRIMEF(H/2.,B2/2., CON, TIN, ACT)
B4 = H*PRIMEF(H, B3, CON, TIN, ACT)
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Y(1) = 1. /6. *%(Bl+2. *B2+2. *B3+B4)
S =0.02
SFINAL = 0, 04
INIT =1
CALL RK(S,SFINAL, Y, YPRIME, DERIV, NUMBER, ERR2, ERRI, INIT, W, DX)
INIT = -1
DO21 J =1, 98
SFINAL = S+0. 02
CALL RK(S,SFINAL, Y, YPRIME, DERIV, NUMBER, ERR2, ERR1, INIT, W, KX)
IF(J-98) 30, 31, 32
30 GO TO 21
31 PRINT 40, CON,y(l)
40 FORMAT (2E20. 8)
GO TO 21
32 GO TO 21
21 CONTINUE
END
SUBROUTINE DERIV(S, Y, YPRIME)
DIMENSION Y(1), Y PRIME(1)
COMMON CON, TIN,ACT ~
YPRIME(l) = -1. +S/Y(1)*CON/(TIN-S)*EXPF(-ACT/(TIN-S))
RETURN
END
END
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APPENDIX 2. A SAMPLE FORTRAN PROGRAM FOR SOLVING THE
GAS PHASE EQUATION BY THE ASYMPTOTIC METHOD

Symbols

YO = A

O
Y4 = A4
ACT = E
TIN = Tf
Z =n
ROM2ZF = library subroutine for numerical integration

C N =1, E =5.56

DIMENSION Y(5, 501), R(500)
EXTERNAL FUNEV

Y(1,1) = 0.
Y(2,1) = 0.
Y(3,1) = 0.
Y(4,1) = 0
Y(5,1) = 0
SUMR = 0,

z =1,

DO 21 =1,500
P=1

BOW = .004%(P-1.)
UPP = . 004%P
CALL ROM2F(FUNEV, BOW, UPP, 0. 001, NN, VAL)

R(I) = VAL

SUMR = SUMR + R(I)

2 Vi1 T 1 1\ - NP TIICIIMR)Y
~ d\dyl 1 1) ™ OWAN L & (W avaaty

YO = Y(1,501)
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SUMR = 0.

DO 31 =1,500

R(I) = 0.002%(Y(1,1) + Y(1, I+l))
SUMR = SUMR #R(I)
Y(2,141) =4. *SUMR/ Y(1, I+1)
Yl = Y(2,501)

SUMR = 0.

DO 41 =1,500

R(I) = 0.002%(Y(2, I)+Y(2, I+1))
SUMR = SUMR + R(I)

Y(3,141) = (-0, 5%Y(2, I+1)*%2-SUMR)/ Y(1, I+1)
Y2 = Y(3,501)

SUMR = 0.

DO 5 I=1,500

R(I) = 0.002%(Y(3,I)+Y(3, I+1))

SUMR = SUMR+R(I)

Y(4,141) = (-Y(2, [+1)*Y(3, I+1)-SUMR)/ Y (1, I+1)
Y3 = Y(4, 501)

SUMR = 0.

DO 6 I=1,500

R(I) = 0. 002%(Y(4, I)+Y(4, I+1))

SUMR = SUMR+R(I)

Y(5,1+1) = (-SUMR-0. 5%Y(3, I+1)%*2-Y (2, I+1)* Y (4, I+1))/ Y(1, I+1)
Y4 = Y(5,501)

PRINT 7, YO Y1, Y2, Y3, Y4

FORMAT(5E20. 8)

END

FUNCTION FUNEV(X)

ACT =5.56

TIN = 3.

Z =1

FUNEV = 2. %X#*%Z/(TIN-X)**Z*EXPF(-ACT/(TIN-X))

RETURN

END

D
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APPENDIX 3. A SAMPLE FORTRAN PROGRAM FOR THE BURNING
RATE COMPUTATIONS

The program consists of the main program, subroutine STEP, sub-
routine RV and function FX. The computation from P = 1.0 to 0.98 is done
in the main program. The computation from 0.98-nAP to 0.98-(n+l)AP,
n=0¢1,2, , is done in subroutine STEP. After the first step, the function
of the main program is to check the output of STEP and stop the computation
if a quench or a burn-out is reached. The criteria for a quench and a burn-
out are: G £ 0.002 for a quench, dP/dt ) -0.002 for a burn-out. The sub-
routine RV computes N\ from equation (74'). The integral (76) is evaluated
by library subroutine ROMIF. The function FX represents the function K1
in a small interval.

Symbols
N = number of steps
T =T
X =x
G =G
P =P
DT = dt
DX = dx
DG = dG
DP = dP
BETA = Gr
PHI =0
RN =n
RM =m
RAMDA =\
RAMDAS = )\o
TETF = K1
DELF = dP/dr
RESF =1 - ea
ROMIF = library routine for numerical integration
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A sample FORTRAN program for a burning rate computation

C N=10 E = 5000°K, HS = 0.

DIMENSION X(200), T(200), P(200), PHI(200), BETA(200), G(200)
COMMON DS, SR, RM, RAMDAS, TA, TB, XM, TM, XA, XB
EXTERNAL FX

DELF(DS, SR, P, G, ) = DS/(l. -SR)*(SR*G- P)

TETF(X, XO, T, TO, PAI) = EXPF(-1. *(X-XO0)*%2/4, /(T-TO))/2.
1/SQRTF(PAI*(T-TO))

RESF(X, T) = 0.5-0. 5%EXPF(T-X)+0. 5%(ERFN(X/2. /SORTF(T))
1+EXPF(T-X)*ERFN((2. *T-X)/2. /SQRTF(T)))
PAI=3.1415926535

RN =1.0

RM = RN/2.

RAMDAS = . 21759453

P(l) = 1.0

G(l) =1.0

T(1) = 0.0

PHI(1) = 1. 0

X(1) = 0.0

PR = 0.1

SR = PR#**(l. -RM)

DS = 1.0

DP = -0.02

DPI = 0. 5%DP

DT1 = -DP1/DS

T1 = DTIL

Pl = 1. 0+DPl

CALL RV(l., P, RAMDA)

Gl = RAMDA/RAMDAS*PI#*RM

DT = DP/DELF(DS, SR, Pl, Gl)

X(2) = GI*DT

1t

P(2) =1.0+DP
T(Z) = DT
RES = RESF(X(2), T(2))

DSUM = 1. /GI*ERFN(GI*SQRTF(T(2))/2.)
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PHI(2) = RES/DSUM#*2.0-1., 0
CALL RV(PHI(2), P(2), RAMDA)
BETA(2) = RAMDA/RAMDAS
G(2) = BETA(2)*P(2)**RM
N=2
PRINT 5, N, P(2),G(2), T(2), BETA(2)
5 FORMAT(I6, 4E20, 8)
DP = -0, 005
11 NINT = N
IF(197-NINT) 22, 21, 20
20 GO TO 23
21 GO TO 500
22 GO TO 500
23 CALL STEP (N, T, P, X, G,PHI, BETA, DP, DPT)
PRINT 5, N, P(N), G(N), T(N), BETA(N)
IF(G(N)-0.002) 30, 30, 31
30 PQ = P(N)-G(N)¥(P(N)-P(N-1))/(G(N)-G(N-1))
PRINT 70, PQ .
70 FORMAT(4H PQ = E20.8)
GO TO 500
31 GO TO 32
32 REMAIN = -0.002DPT
IF(REMAIN) 1,1, 3
1 SL=1./SR
SG = (G(N)-G(N-1))/(P(N)-P(N-1))
GB = (G(N)-SG*P(N))/(l. 0-SG/SL)
PB = GB/SL
PRINT 71, GB, PB

71 FORMAT (4H GB = E20.8,4H PB = E20, 8)

GO TO 500
3 GOTOl
500 CONTINUE
END

SUBROUTINE STEP(N, T, P,X, G, PHI, BETA, DP, DPT)
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DIMENSION X(200(, T(200), G(200), P(200), PHI(200), BETA(200)
COMMON DS, SR, RM, RAMDAS, TA, TB, XM, TM, XA, XB
EXTERNAL FX

DELF(DS, SR, P, G) = DS/(1. -SR)*(SR*G-P)

OTETF(X, X0, T, TO, PAI) = -EXPF(-1. #(X-X0O)**2/4, /[(T-TO))/2./
1ISQRTF(PAI*(T-TO))

ORESF(X, T) = 0.5-0. 5%EXPF(T-X)+0. 5%(ERFN(X/2. /SQRTF(T))+
LEXPF(T-X)*ERFN((2.*T-X)/2. /SQRTF(T)))

PIA = 3,1415926535

DPT = DELF(DS, SR, P(N}, G(N))

IF(DPT) 10,500,500

DPl = 0.5%DP

DT1
DX1

DP1/DPT
DT1#G(N)
Tl = T(N)+DT1
X1 = X(N)+DX1

it

Pl = P(N)+DPI

RESI = RESF(X1, T1)
M = N-1

IF(N-2) 500,4,5
TA = T(1)

TB = T(2)

XA = X(1)

XB = X(2)

TM = T1

H

XM = X1

VAL = ROMIF(FX, TA,TB,9)
SUM = VAL*(PHI(1)+PHI(2))/2.
GO TO 6

MM = M-1
SUM = 0.

DO1I =1, MM

TA = T()
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TB = T(I+1)

XA = X(I)

XB = X(I+1)

T™ = Tl

XM = X1

VAL = ROMIF(FX, TA, TB, 5)

SUM = SUM+VAL*(PHI(I)+PHI(I+1))/2.
TA = T(M)

TB = T(N)

XA = X(M)

XB = X(N)

™™ = Tl

XM = X1

VAL = ROMIF(FX, TA, TB, 8)

SUM = SUM+VAL*(PHI(M)+PHI(N))/2.
DSUM = 1. /G(N)*ERFN(G(N)*SQRTF(DT1)/2.)
PHIl = (RES1-SUM)/DSUM?#*2. - PHI(N)
CALL RV(PHIl, P, RAMDA)

Gl = RAMDA/RAMDAS#*RI**RM

DT = DP/DELF(DS, SR, Pl, Gl)
IF(DT) 11,11,12

DPT = 0.

GO TO 500

DX = DT*GL

T(N+l) = T(N)+DT

X(N+1) = X(N)+DX

P(N+l) = P(N)+DP

RES = RESF(X(N+1), T(N+1))

IF(N-2) 500,7,8

TA = T(1)
TB = T(2)
XA = X(1)
XB = X(2)
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T™ = T(3)
XM = X(3)
VAL = ROMIF(FX, TA, TB, 8)
SUM = VAL*(PHI(1)+PHI(2))/2.
GO TO 9
8 MM =M-1
SUM = 0.
DO 21 =1,MM
TA = T(1)
TB = T(I+l)
XA = X(I)
XB = X(I=1)
TM = T(N+)
XM = X(N+1)

VAL = ROMIF(FX, TA, TB, 5)
2 SUM = SUM+VAL*(PHI(I)+PHI(I+1))/2.

TA = T(M)

TB = T(N)

XA = X(M)

XB = X(N)

TM = T(N+)

XM = X(N+1)

VAL = ROMIF(FX, TA, TB,8)

SUM = SUM+VAL#*)PHI(M)+PHI(N))/2.
9 DSUM = 1. /GI*ERFN(GI*SQRTF(DT)/2.)
PHI(N+1) = (RES-SUM)/DSUM*2. - PHI(N)
CALL RV(PHI(N+l), P(N+1), RAMDA)
BETA(N+l) = RAMDA/RAMDAS
G(N+1) = BETA(N+1)*P(N+)**RM
N = N+l
500 RETURN
END
SUBROUTINE RV(PH, P, RAM)
COMMON DS, SR, RM, RAMDAS, TA, TB, XM, TM, XA, XB
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Z = PH*0. 4*RAMDAS/P%*RM
AO =0.49806528E+01
Al = -0,.28204058E+03

A2 = 0.75147485E+04
A3 = -0.11617785E+06
A4 = 0.11375420E+07
A5 = -0.73028185E+07
A6 = 0.30725407E+08
A7 = -0.81693743E+08
A8 = 0.12457777E+09

A9 = -0.83034562+08

RAM = AO+AI%Z+A2KZ%%2+A3R ZK%3+A 4% Z3k 4+ AS* ZH*54+ Ab% Z%%*6+
1ATHZxETHABRZU%B+AQ ¥ Z%X*9

RETURN

END

FUNCTION FX(TO)

COMMON DS, SR, RM, RAMDAS, TA, TB, XM, TM, XA, XB

PAI = 3.1415926535

FX = EXPF{(-1. #(XM-XA-(XB-XA)/(TB-TA)*(TO-TA))*%2/4./(TM-1TO))
/2. /SQRTF(PAI*(TN-TO))

RETURN

END

END
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flux through the expanded nozzle. n=1, E =5.56, Ah =-0.2,
P,/P, = 0.05. v
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Variation of burning rate with pressure during depressurization at
various depressurization rates. The upper part of the figure shows
the gross effect. The lower part is a detailed view of the lower left
hand corner. The straight line originating at the origins is the mass
flux through the expanded nozzle. n=1.0, E=5.56, Ah = -0.2, P
PZ/Pl = 0.1 w
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Figure 9. Variations of burning rate with pressure during depressurization at

various depressurization rates. The upper part of the figure shows
the gross effect. The lower part is a detailed view of the lower left
hand corner. The straight line originating at the origins is the mass
flux through the expanded nozzle. n=1.0, E =5,56, Ah = -0.2,
pz / Pl =0.2. w
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Variations of burning rate with pressure during depressurization at
various depressurization rates. The upper part of the figure shows
the gross effect. The lower part is a detailed view of the lower left

hand corner. The straighti line originating at the corigins is the mass
flux through the expanded nozzle. n =1.0, E =5, 56, Ah =0.2,
w

PZ/P1 = 0. 05,
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Variations of burning rate with pressure during depressurization at
various depressurization rates. The upper part of the figure shows
the gross effect., The lower part is a detailed view of the lower left
hand corner. The straight line originating at the origins is the mass
flux through the expanded nozzle. n =1.0, E =5.56, Ah_ =0.2,

= 0.1 v
P,/P L
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Figure 12. Variations of burning rate with pressure during depressurization at
B various depressurization rates. The upper part of the figure shows
the gross effect. The lower part is a detailed view of the lower leit
hand corner. The straight line originating at the origins is the mass
flux through the expanded nozzie. n =1.0, E = 5. 50, {Shw -~ 0.2,
PZ/Pl =0.2.
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Variations of burning rate with pressure during depressurization at
various depressurization rates. The upper part of the figure shows
the gross effect. The lower part is a detailed view of the lower left
hand corner. The straight line originating at the origins is the mass
flux through the expanded nozzle, n=1,0, £ =1.12, AR =0

W ~r
PZ/P1 =0.1.
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Figure 14, Variations of burning rate with pressure during depressurization at

various depressurization rates. The upper part of the figure shows
the gross effect. The lower part is a detailed view of the lower left
hand corner. The straight line originating at the origins is the mass

flux through the expanded nozzle. n =1.0, E =11.12, Ah_ =0,
P,/P =0.2. o
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Variations of burning rate with pressure during depressurization at

various depressurization rates. The upper part of the figure shows

the gross effect. The lower part is a detailed view of the lower left

hand corner. The straight line originating at the origins is the mass
flux through the expanded nozzle. n = 0.8, E = 5,56, Ah = 0,

PZ/ P1 = 0.1,
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Figure 16. Variations of burning rate with pressure during depres surization at

various depressurization rates.
the gross effect.
hand corner.

1:’2/P1 =0.2.

The upper part of the figure shows

The lower part is a detailed view of the lower left

The straight line originating at the origins 1s the mass
flux through the expanded nozzle. n = 0.8, E = 5.56, /\hW =0,
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Figure 17. Variations of burning rate with pressure during depressurization at
The upper part of the figure shows

The lower part is a detailed view of the lower left
The straight line originating at the origins is the mass

various depressurization rates.
the gross effect.

) P
hand ccrner.

flux through the expanded nozzle. n=1.2, E = 5,56, Ahw— v,
Pz/pl = O.l.
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Variations of burning rate with pressure during depressurization at
various depressurization rates. The upper part of the figure shows
the gross effect. The lower pari is a dectailed view of the lower left
hand corner. The straight line originating at the origins is the mass
flux through the expanded nozzle. n =1.2, E =5.56, Ah_ =0,

w
P’Z/P1 =0.2.
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Figure 19. Variation of burning rate with pressure during depressurization for

the case: n=1, E =5.56, Ahy =0, and P,/P) = 0.1. The curves show
how the differences between burning rates become more pronounced as
depressurization proceeds.
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Figure 20. Variation of chamber pressure with time for two different pressuriza-
tion rates; n =1, E = 5, 56, /\hw =0, PZ/P1 =0.1.
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Quench limit obtained in computer experiments. The open symbols
represent experiments in which the propellant quenched. The solid
symbols represent experiments in which the propellant continued to
burn. n=1.0, E = 5.56, and Ahw = 0.
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Figure 22. Quench limit obtained in computer experiments.
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Quench limit obtained in computer experiments. The open symbols
represent experiments in which the propellant quenched. The solid

symbols represent experiments in which the propellant continued to
burn. n=1.0, E=5,56, Ah =0.2.
w




15

10

Figure 24.

A

'} 1
0.05 0.1 1:2/1>l 0.2

Quench limit obtained in computer experiments. The open symbols
represent experiments in which the propellant quenched. The solid

symbols represent experiments in which the propellant continued to
burn. n=1.0, E =112, Ah = 0. ‘
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Quench limit obtained in computer exper.iments. The open symbols
represent experiments in which the propellant quenched. The solid

symbols represent experiments in which the propellant continued to
burn. n=0.8, E=5.56, Ah =0,
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Figure 25.
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Quench limit obtained in computer experiments., The open symbols
represent experiments in which the propellant quenched. The solid
symbols represent experiments in which the propellant continued to
burn. n=1.2, E =5.56, Ahw = 0,
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Figure 27. Comparison of the results of the present work with the expected results
of a model which ascribes quench-limits to a constant critical depres-
surization time.



